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Abstract

Purpose — The purpose of this paper is to consider the time-fractional diffusion-wave equation. The
time-fractional diffusion equation is obtained from the standard diffusion equation by replacing the
first-order time derivative with a fractional derivative of order o € (0, 2]. The fractional derivatives
are described in the Caputo sense.

Design/methodology/approach — The two methods in applied mathematics can be used as
alternative methods for obtaining an analytic and approximate solution for different types of
differential equations.

Findings — Four examples are presented to show the application of the present techniques. In these
schemes, the solution takes the form of a convergent series with easily computable components. The
present methods perform extremely well in terms of efficiency and simplicity.

Originality/value — In this paper, the variational iteration and homotopy perturbation methods are
used to obtain a solution of a fractional diffusion equation.

Keywords Differential equations, Iterative methods, Flow, Heat, Numerical analysis

Paper type Research paper

1. Introduction
A fractional diffusion-wave equation is a linear integro partial differential equation
obtained from the classical diffusion or wave equation by replacing the first- or second-
order time derivative term by a fractional derivative of order o € (0, 2]. These equations
arise in anomalous diffusion and sub-diffusion systems, the description of fractional
random walk and the unification of diffusion and wave propagation phenomena. The
nature of the diffusion is characterized by the temporal scaling of the mean-square
displacement <r2(t)> ~ 1*. For standard diffusion v = 1, whereas in anomalous sub-
diffusion « < 1, and in anomalous super-diffusion o« > 1. Both types of anomalous
diffusion have been unified in continuous time random walk models with spatial and
temporal memories, see e.g. the reviews in Mainardi (1997), Agrawal (2002), Metzler et al.
(1999), Metzler and Klafter (2000), Schneider and Wyss (1989), and references therein.
Most equations for heat and fluid flow can be described by differential equations, but
heat in, e.g, hierarchical wool fibers or bamboos can be described using fractional
differential equations, and the hierarchical wool fibers, for example, behave with high
heat conduction efficiency (Fan et al., 2008; Zhou et al., 2009).

The solution of a fractional differential equation is much involved. In general, there
exists no method that yields an exact solution for a fractional differential equation. No
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analytical method was available before 1998 for such equations even for linear fractional
differential equations. In 1998, the variational iteration method (VIM) was first proposed
to solve fractional differential equations with greatest success (He, 1998). Many authors
found VIM is an effective way to solving fractional equations, both linear and nonlinear
(Odibat and Momani, 2006; Das, 2008). Momani and Odibat (2007) and Ganji et al. (2008)
applied the homotopy perturbation method (HPM) to fractional differential equations
and revealed that the HPM is an alternative analytical method for fractional differential
equations. Momani ef al. (2008) and Odibat and Momani (2008) compared solution
procedure between VIM and HPM. Recently, Ray (2007) used Adomian decomposition
method to obtain exact solutions for time-fractional diffusion-wave equations.

In this paper, we shall consider the time-fractional diffusion equation (Mainardi, 1997):

u(x,t)  Pu(x,t)
ot oxz 7

where 0%(e)/0t” is the Caputo derivative of order «. In this paper, we use the variational
iteration (He and Wu, 2007; He, 2007, 1999a, 2000a; Ozis and Y1ildirim, 2007; Y1ildirim and
Ozis, 2009; Yildirim, 2008a, b; Labidi and Omrani, 2009) and HPM (He, 1999, 2000b;
Yildirim and Ozis, 2007; Yildirim, 2008c-f, 2009a, b; Dehghan and Shakeri, 2008, 2007;
Shakeri and Dehghan, 2007, 2008; Achouri and Omrani, 2009; Ghanmi et al,, 2009) to
obtain a solution of a fractional diffusion equation (1.1).

The solution procedure using He’s polynomials in both VIM and HPM were
introduced (Mohyud-Din et al, 2009; Noor and Mohyud-Din, 2008). The most
development of VIM and HPM were summarized in He (2006a, b, 2008a, b).

(1.1)

2. Basic definitions of fractional calculus

We give some basic definitions and properties of the fractional calculus theory which
are used further in this paper.

Definition 2.1

A real function, f{x), x > 0, is said to be in the space C,, 1 € R if there exists a real
number p(>p), such that Ax) = x’f1(x), where f1(x) € (J0, oo), and it is said to be in the
space C,/" if ) ¢ C,meN.

Definition 2.2

The Riemann-Liouville fractional integral operator of order o > 0, of a function
feC,p> -1, isdefinedas:

Jf(x) = F(la)L (x =) (Hdt, a>0, x>0,
J°f(x) = f(x).

Properties of the operator / can be found in Miller and Ross (1993), Samko et al. (1993),
and Oldham and Spanier (1974); we mention only the following, for
feC, p>-1, a,f8>0,andy > —1:

. ](1]3f(x) :](y+f3f(x)7
< JJ%f(x) = J°]*f(x),and
o J9 =T(y+1)/T(a+v+1)x*".

The Riemann-Liouville derivative has certain disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, we shall
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introduce a modified fractional differential operator D® proposed by Caputo in his
work on the theory of viscoelasticity (Luchko and Gorneflo, 1998).

Definition 2.3
The fractional derivative f{x) in the Caputo sense is defined as:

M=ol

form—1<a<m, meN, x>0, feC.
Also, we need here two of its basic properties.

Lemmal1 lfm—1<a<m, meNandf € CL”, i > —1,then

Da]uf(x) :f(x)7

DYf(x) =" D"f (x) = (x — " ()t (2.1)

and

*%

m—1
JoD"f (x) )= P05 x>0
k=0

The Caputo fractional derivatives are considered here because it allows traditional
initial and boundary conditions to be included in the formulation of the problem. In this
paper, we consider the foam drainage equation with time- and space-fractional
derivatives, and the fractional derivatives are taken in Caputo sense as follows.

Definition 2.4
For m to be the smallest integer that exceeds «, the Caputo time-fractional derivative
operator of order o« > 0 is defined as:

" 0“u(x,t
Dt'u(x, lL) = %
1 ! a1 0Mu(x, T)
_ —pyre 2 2 fi -1 2.2
B 11(7}4_O[)J0(t ) 5 dr, form <a<m, (22)
O"u(x,t)

o fora =meN.

For more information on the mathematical properties of fractional derivatives and
integrals one can consult the mentioned references.

3. The HPM
Consider the following nonlinear differential equation:

A(w) —f(r)=0, req, (3.1)
with boundary conditions:

B(u,0u/on) =0, reT, (3.2)

where A is a general differential operator, B is a boundary operator, f{») is a known
analytic function, and I is the boundary of the domain 2.

The operator A can, generally speaking, be divided into two parts L and N, where L
1s linear and V is nonlinear, therefore Equation (3.1) can be written as:



L(u) +N(u) —f(r) =0. (3.3)

By using homotopy technique, one can construct a homotopy v(7,p) : 2 x [0,1] — &,
which satisfies:

H(v,p) = (1 = p)[L(v) — L(uo)] + p[A(v) — f(r)] = O (34a)
or
H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)] = 0, (3.4b)

where p € [0, 1] is an embedding parameter, and u«, is the initial approximation of
Equation (3.1) which satisfies the boundary conditions. Clearly, we have:

H(v,0) = L(v) — L(ug) = 0 (3.5)
or
H(v,1) = A(v) — £(r) =0, (3.6)

the changing process of p from zero to unity is just that of v(r, p) changing from
uo(r) to u(r). This is called deformation, and also, L(v) — L(ug) and A(v) — f{z) are called
homotopic in topology. If the embedding parameter p(0 < p < 1) is considered as a
“small parameter”, applying the classical perturbation technique, we can assume that
the solution of Equation (3.4) can be given as a power series in p, 1.e.:

v =0y + pv1 + pPvg + - - (3.7)
and setting p = 1 results in the approximate solution of Equation (3.1) as:

u:zljin%v:vo+vl+vg+~-- (3.8)

4, The VIM
The VIM was proposed by He and Wu (2007) and He (1999a, 2000a, 2007), where
correction functional for the Equation (3.3) can be written as:

¢

11 (2) = un(t) + L AT)(L(un(7)) + N (ttn (7)) = f (7)), (4.1)

where A is a general Lagrange multiplier, which can be identified optimally via the
variational theory (He, 2004), the subscript # denotes the nth approximation, and #,, is
considered as a restricted variation, 1.e. 6#%, = 0.

It is obvious now that the main steps of the VIM require first the determination of the
Lagrangian multiplier A that will be identified optimally. Having determined the
Lagrangian multiplier, the successive approximations #,,, 1, # > 0, of the solution « will
be readily obtained upon using any selective function u,. Consequently, the solution:

u= lim u,. (4.2)

n—oo
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5. Implementation of the present methods
5.1 Applications of the HPM
Example 1. We first consider:

Ou(x,t)  0%u(x,t)
ot oxr

Let us consider initial conditions:

u(x,0) =sin(x), wu(x,0)=0,

O<x<m for 1<a<2,
and boundary conditions:

u(0,t) = u(m,t) =0, ¢t>0.
According to HPM, we readily construct the homotopy:

2

0
Diu(x,t) =p @u(x, t).

Assume the solution of equation in the form:

u = ug + pup +p2u2+p3u3+p4u4+--~,

(5.5)

(5.6)

Substituting (5.6) into Equation (5.5) and collecting terms of the same power of p gives:

P’ Diug =0, u(x,0) = uo(x),

32

b Djuy = 52 0 u1(0,2) = uy(m, 1) =0,
2 82

P Difug = prokat uz(0,1) = uz(m, 1) = 0,
2

j)g :D?’Mg :wug, Mg(o,f) :ug(w,t) =0,
62

j)4 : D;¥M4 = @Mg, M4(07 t) = M4(7T, t) =0,

Solving the above equations, we obtain:
up(x,t) = sin(x),

10}

%1(x, t) = m

sin(x),

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)



12 Time-fractional

u231) = Fgg 1) S0 G diffusion-wave
_f3a equations
us(x, 1) = msin(x), (5.15)
4o
ug(x,t) = msin(x), (5.16) 643

and so on. Then, setting p = 1 results in the approximate solution of the equation:

u = }}H{ U = o + puy + p*us + pPuz + prug + - - - (5.17)
Therefore, the solution is:
u(x,t) = iﬂsin(x) (5.18)
’ —~D(ra+1) ’

which is the exact solution of the problem. The solution can be verified through
substitution in equation.

Example 2. We now handle:

Ou(x,t)  0u(x,t)

T R o (5.19)
with initial conditions:
u(x,0) =f(x), 0<x<2 (5.20)
w(2,00=0, 0<x<2 forl<a<2, (5.21)
where
X, 0<x<1
fo={5_, i) 622)
and boundary conditions:
u(0,t) =u(2,t) = 0. (5.23)

We see that f(x) is a periodic function with period 2. The Fourier sine series of f{x) in
[0, 2] can be obtained as:

00 1yl D
f@)=> [%] sin (@) , (5.24)

n=1

because of the fact that Fourier sine series well adapted to functions which are zero at
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the end points x = 0 and x = 2 of the interval [0, 2], since all the basis functions
sin((2n — 1)mx/2) have this property.
We will then obtain:

u(x,0) + tuy(x,0),

= D] L - D (5.25)
1[2;4—1 ]111( 2 )

According to HPM, we readily construct the homotopy:

M

82
Dl u(x, 1) :pwu(x, 1). (5.26)

Substituting (5.6) into Equation (5.5) and collecting terms of the same power of p gives:

P Drug =0, u(x,0) = up(x), (5.27)
1 &

D D;’ul = @uo Ul (0, t) =i (2, f) =0, (528)
82

7 Diuy = 5zt (0,1) =uw(2,1) =0, (5.29)
3 &

P D?Mg w u3(0, t) = M3(2, t) =0, (530)
2

p4 : D;‘Xu4 = wMS M4(0, t) = M4(2, t) =0, (531)

Solving the above equations, we obtain:

°° )" @i
Z [ o 1 ] m( 5 ), (5.32)

n=1

i = : 1 i [ 8 in 1 1 y ((2n ; 1)7T)Zsin<(2n —21)7UC>’ (5.33)

n

20 00 n—1 —Dr 4 . 1
uy(x,t) = 2a+1 [2%—)1 1 X ((Zn 5 D ) sm<(2n 21) x>’ (5.34)

n:l




e = [ 8=t ] f@n—-1m\°. [@n—1)mx
us(x,t) = TGat 1) Z 2 1)2772_ X ( 5 ) &n(T), (5.35)

n:l

t4cv
(4o +1)

ug(x,t) =

:(;—_1)1’;2;2: x ((zn;m)ssm <(2n—21W> (5.36)

g

1

and so on. Therefore, the solution is:

( (2n — 1)*m%te '
8 X nl
__22[2;4—1 %

=\ 4 ) . ((@2n—1)mx
z:: T(ok + 1) Sm( 2 )

k=0

(5.37)
which is the exact solution of the problem.
Example 3.
. OPu(x,t)
Dlu(x,t) = o 0<p<2, (5.38)
where D/ (o) is the Caputo derivative of order 3.
With the initial conditions:
u(x,0) = 6(x), wui(x,0)=0. (5.39)
Taking the Fourier transform of Equations (5.38) and (5.39), we obtain:
Dlu(w,t) = —Fu(w, t), (5.40)
1
#(w,0) = ——, 5.41
(w,0) o (5.41)
—+00 .
where it(w, t) = 1/\/2_7TJ e u(x, t)dx,w € R.
According to HPM, Weiroc?adily construct the homotopy:
Dl(w,t) = —putit(w, t). (5.42)
Assume the solution of equation in the form:
U=l + piy + PPty + Ptz + pras + . ... (5.43)

Substituting (5.43) into Equation (5.42) and collecting terms of the same power of p gives:

DMy =0, @(w,0) = ip(w), (5.44)
P D) = —Piy, w1 (w,0) =0, (5.45)
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P2 Dy = — P, dag(w,0) =0, (5.46)
p° Dl = —Piy,  3(w,0) =0, (5.47)

Solving the above equations, we obtain:

1
uy(w, ) = —, 5.48
o(w, ) N (5.48)
_wz t{f
hm(w,t) = —=———, 5.49
W) = U+ 1) (049
o 128
t 5.50
el l) = TR ) (5:50)
—u b 30
U3(w,t) = ——=—r—— 5.51
) = VT s ) (B:51)
and so on.
Then setting p = 1 results in the approximate solution of the equation:
i = iy + piy + pPity + pPug + plug + - - -, (5.52)
1 thﬂ w4t25 thSﬁ
U(w,t) = — — Sl 5.53
1) m{ DE+D D@3+ @D (5:55)
1 & ()
(5.54)

Vor = T(kB+1)
Taking the inverse Fourier transform of the above equation we obtain the solution
1 ;
u(x,t) = Et_ﬁ/2M5/2(|x|/t‘d/2), —00 < x+00, t>0, (5.55)

+
where u(x,t) = 1/\/2_7TJ e “i(w, t)dw, x € Rand

oo B/2\2
Myp(e)/72) = 3 %'/ ) AT 0< g <1 (556)
n—Onvr{—7+ (1 ‘Eﬂ



Here, M2 denotes the so-called M function of order 4/2, which is a special case of the
Wright function (Mainardi and Pagnini, 2003).

Example 4. Let us consider (1 + 1)-dimensional nonlinear fractional equation:
Dt — Aty + Cu—ou® =0, 1<a<2 (5.57)
with the initial conditions:
u(x,0) = ecoskx, u;(x,0)=0. (5.58)
According to HPM, we readily construct the homotopy:
Dlu = p[ ity — P + ou®). (5.59)

Substituting (5.6) into Equation (5.5) and collecting terms of the same power of p gives:

»° :DMup =0,  u(x,0) = up(x), (5.60)
pL DYy = [V [uo),, — Cuo + ofuo]’], (5.61)
P2 Dy = (VP[] — Cun + of3uo)u])], (5.62)

Solving the above equations, we obtain:

uo(x,t) = € cos kx, (5.63)
2 b2 3 3 %ol
_ ekt cos(kx) (e cos(kx) — ae® cos® (kx))t
ui(x,t) =€ cos kx Tat1) Tat1) , (5.64)
2 b2 3 3 o
- ekt cos(kx) (e cos(kx) — oe® cos® (kx))t
uz(x,t) = € cos kx Tatl) Tt 1)
4 14 2a 23
ey K cos(kx)i™ o[ 5 o 3k*oe
T T@atD) ~v° | —c*ek” cos(kx) + cos(kx)
2o’ 2 ey? k? cos(kx)t>®
5.65
Ty Cos(gkx)} TCa+1)  TCatl) (5.65)

N c?(c% cos(kx) — ae® cos®(kx))1**  3oe’y* B cos® (kx)1*

T(Za + 1) [(2a+1)
_ 30¢e? cos? (kx) (e cos(kx) — ae® cos® (kx))*
I'2a+1)

and so on.
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20.6 Example 1. According to VIM, the iteration formula for Equations (5.1)-(5.4) is given
’ by:
o 62
e (5,) = e, 8) =7 | un(, ) = 5 (1) |. (5.66)
648

By the above variational iteration formula, if we begin with:

up(x,t) = sin(x), (5.67)

we can obtain the following approximates:

. A .
uy(x,t) =sin x — msm(%)7 (5.68)
. o S
s (x,t) = sin x — msm(x) + msm(x), (5.69)
us(x,t) = sin x — Lsin(x) + Lsin(x) - Lsin(x) (5.70)
s T(a+1) ['(20+1) (3o +1) row
) el ) 200 ) 3a )
M4(x, t) =S x — msln(x) + msln(x) — msln(x)
t4a' .
+ msm(x), (5.71)
and so on.
Therefore, the solution is:
= (=)
= ; Mot 1) sin(x), (5.72)

which is the exact solution of the problem. The solution can be verified through
substitution in equation.

Example 2. By the variational iteration formula (5.66) for Equations (5.19)-(5.24), if we
begin with:

u(x,0) + tuy(x,0)

i[ o ] . <(2n—21)7rx)' (5.73)

n=1




We can obtain the following approximates:

o0

Time-fractional

8- | . [en-1)m
ur(x,1) :Z; l(Zﬂi)l)ZWZ] sm<( " 5 ) x)

y ((2% ; 1)7r> Zsin <(2n —2 l)wx)’

P )n 1 diffusion-wave

(a+1 ; [ 2n — 1) 1 equations
(5.74)

649

us(x, 1) = i L;il)l’;z;} sin<(2n2 1)7rx) aj— . i [ l)n 1 ]
% ((Zn ; 1)7r> Zsin<(2n —21)7rx> 2@: : nzoc: l S )111 1 ]
" ((Zn ; 1)7r> 4sin ((2;4 —2 1)7rx>’ -
g; [ 2n — 1;;2;21 = _21)7”) (atj- 1) ﬁ; L;,(l _1)1n 121
(50 s S [t
<(EF) w(®57) - 3aa+1,,i[2n_1 ]
y 2%—17r65m (2n — 1)mx -
(F) w(557) >
ua(x,1) = g l P 2] 2n -1 7rx> p(oi 1); L;i__l{;z;]
" ((214 ; 1)7T>2Sin ((2n _21)”) +F(2t2a 1)200: I 8(_1):1 1
a+1) = |(2n —1)*n?
() (50 e > (S,i__l)w
: ((Zn 2 Dﬂ) s <(2n 21)m> - P(4Zm+ 1) 2 _(;ili;;z;_
" ((2n - 1)7r> ‘L <(2n - 1)7rx>7 570

and so on.



HFF Therefore, the solution is:

20,6 k
(2n — 1)* 72t

8 & I <_ 4 ) (20— Dmx
__22[271_1 1><Z NEVESY sm( 5 ) (5.78)

=1 k=0

650

Example 3. According to VIV, the iteration formula for Equations (5.38)-(5.42) is given
by:

5

Up1(w, 1) = up(w, t) = J;' {8

57 it (w, 1) + Wiy (w, t)} (5.79)

By the above variational iteration formula, we begin with:

it (w, £) = Viz_w (5.80)
and find:
W2 18
i (w0, 1) = \/_ NIt et (5.81)
. 1 W2 8 oA 126
welrl) = o T ) | arT@B 1) (582)
) R P WS
Ul l) = o T ) | Ve T@B D) var@srD, oY
and so on.
1 Ww’t? wh? Wi
ww ) = \/Z%{ TB+1) T@3+1) TEE+D ) (5:84)
)t
S 559

Taking the inverse Fourier transform of the above equation, we obtain the solution:

1, ;
u(x,t) = ét’d/ZMg/2(|x|/td/2), —00 <x+o00, t>0. (5.86)



Example 4. According to VIM, the iteration formula for Equations (5.57)-(5.58) is given
by:
1] 2

() — 7 (1) + Pl 1) — ot

U (3, ) = (5, 1) = ] =

(5.87)
By the above variational iteration formula, we begin with:
uo(x,t) = € cos kx, (5.88)
and find:

2 b2 3 3 el
B ekt cos(kx)  (ce cos(kx) — oe® cos® (kx))t
u1(x,t) =€ cos kx Tla+1) Tla+ 1) . (5.89)

V’ek?t® cos(kx) (% cos(kx) — oe® cos® (kx))t
T(a+ 1) T(a+ 1)
ey B* cos(kx)t*® 20ed

3k‘oe
2|22
a1 1) v [ cek” cos(kx) + 1

12 N ey? k? cos(kx)t?®
%a+1) | Ta+l)
N ¢?(%e cos(kx) — oe® cos® (kx))1**  3oe’y* K cos® (ka)t**
T(2a+1) T(2a +1)
30e? cos?(kx)(c*e cos(kx) — o cos®(kx))2”
a [(2a +1) ’

us(x,t) =€ cos kx —

cos(kx)

(5.90)

and so on.

6. Conclusion

In this study, we demonstrate that present methods are also well suited to solving time-
fractional diffusion-wave and nonlinear fractional equations. The HPM and VIM are
straightforward, without restrictive assumptions, and the components of the series
solution can be easily computed using any mathematical symbolic package. Moreover,
these methods do not change the problem into a convenient one for the use of linear
theory. They, therefore, provide more realistic series solutions that generally converge
very rapidly in real physical problems. When solutions are computed numerically, the
rapid convergence is obvious. Moreover, no linearization or perturbation is required.
They can avoid the difficulty of finding the inverse of the Laplace transform and can
reduce the labor of perturbation method. Furthermore, as the HPM and VIM do require
discretization of the variables, i.e. time and space, it is not affected by computational
round off errors and one is not faced with the necessity of large computer memory and
time. Consequently, the computational load will be reduced.
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